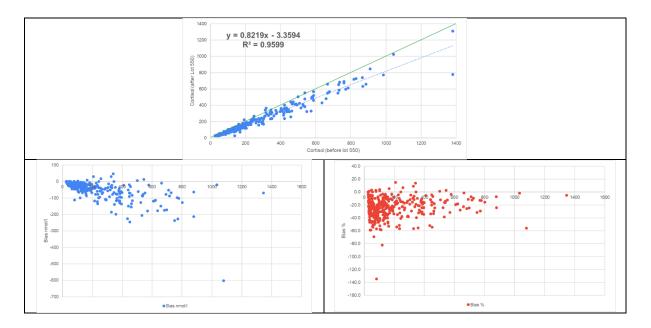
Preliminary Report on Impact of Immulite 2000 Cortisol antibody change October 2020 including evaluation of manufacturer recommended adjustment factors

Peter Graham, University of Nottingham, ESVE EQA Co-ordinator

Updated 3rd November 2020 (First report 23rd October, Second Report 27th Oct, Third Report 29th October)

Based on 466 results from 10 labs submitted through an online shared spreadsheet.

The most up-to-date version of this document is <u>here</u>.


Raw results from Lot 550 and beyond

See next section for evaluation of manufacturer recommended adjustment factors

Serum Overall (canine)

Overall there is negative bias in the results following the antibody change (-23%). The bias varies across concentrations which may make the implementation of simple equipment correction factors difficult as a means to address the change.

N =	401			
	Minimum	Maximum		
Before 550	27	1380		
550 and after	27	1311		
Average Bias nmol/L Average Bias %	-40 -22.8			
Cortisol range nmol/l	n	Average %Bias	% Bias rai	nge
Cortisol range nmol/l <50	n 77	-	% Bias rai -46.7	1ge 3.0
•		%Bias		•
<50	77	%Bias -15.1	-46.7	3.0
<50 50-150	77 152	%Bias -15.1 -26.9	-46.7 -134.5	3.0 3.9

If adjustment of cut-off values is a consideration, the following are the outcome of simple linear regression.

Original Cut- off	Regression derived adjusted cut-off
40	29
50	37
138	110

150	120
250	203
500	410
550	452
600	493

Subjective visual assessment of paired results may also help in deciding new interpretative guidance:

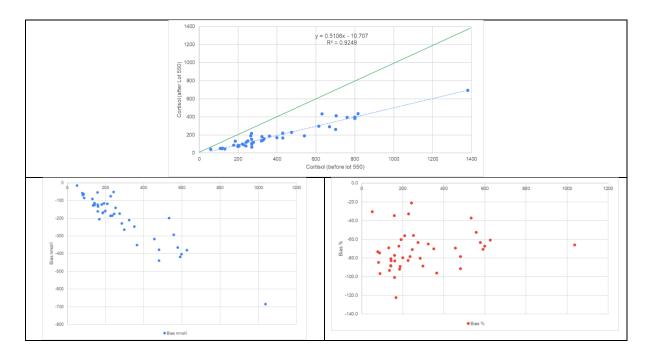

For 40nmo	ol/I:	For 50 nm	ol/L:	For	138 nn	nol/I:
Previous	New	Previous	New	Pre	evious	New
38	29.8	48	30.3		135	106
38	27.6	48	36		136	131
38	30	49	50.5	:	136	75
38.6	32.8	49.1	34.2	:	138	27.6
38.6	28.1	49.7	42.8		139	104
39	30	51	41.9		141	115
39.5	27.9	51	41.5		141	128
39.5	29.8	51	46		41.6	131.1
40	29.5	52	37.5		142	119
41	33				142	113
41	29	52.1	28.4		142	123
41	35	e.g., 40nm	nol/L		142	105
41.9	27.6			e.a.	, 110 r	mol/l
42	33			c.g.	, 110 .	
42	32					
e.g. 30nm For 150nm		For 250 nn	nol/L:	For	500 nn	nol/l
Previous	New	Previous	New	Pre	evious	New
145	140	241	204		172	441
147	103	244	244		483	414
149	127	246	223			
149	139	248.7	266.6		488	417
150	113	255	224		194	403
151	110	260	183		199	505
152	107	o a 200 r	mol/l	Ę	508	425
153	98.2	e.g., 200 r		Ę	516	367
154	109			5	527	411
155	99			Ę	530	395
e.g., 120n	mol/L			e.g.	, 400n	mol/l
For 550 nn	nol/L:	For 600 nn	no/I:			
Previous	New	Previous	New			

538	477	574	328	
538	384	577	491	
538	552	579	502	
549	323	582	494	
574	328	588	461	
577	491	588	568	
450		588	519	
e.g. 450 r	nmol/L	635	430	
		e.g., 500	nmol/L	

Trilostane samples (within 12hrs of dose, canine)

On earlier versions of this evaluation, it appeared that the "within 12 hours of Trilostane" subset was less dramatically affected. However, with more data-points, it appears that this subset has similar bias to the "all canine sera" data. A separate analysis was performed because manufacturer information includes a change in antibody cross reactivity with adrenal steroid pre-cursors. Trilostane has been reported to cause an accumulation of adrenal steroid precursors.

N =	32			
	Minimum	Maximum		
Before 550	27	384		
550 and after	27	348		
Average Bias nmol/L Average Bias %	-19 -20.2			
Cortisol range nmol/l	n	Average %Bias	% Bias rang	ge
<50	10	-6.4	-27.5	1.2
50-150	11	-37.7	-134.5	1.0
150 250	-	45.0	40 -	447
150-250	9	-15.9	-40.7	14.7
250-500	9 2	-15.9 -11.9	-40.7 -14.0	-9.8


This data subset included trilostane monitoring ACTH stimulations tests (usually with 6 hours of trilostane dose). It did not include "pre-Vetoryl-cortisol" which is usually sampled at 12 or 24hrs after administration.

Urine

The ESVE collaboration data is "urine cortisol" rather than "urine corticoid:creatinine ratio".

Presumably as a result of the new antibody having different cross-reactivity profile for urinary corticoid metabolites, the bias impact on urine cortisol (around -70%) seems to be much greater than that on serum.

N=	44			
	Minimum	Maximum		
Before 550	59.3	1380		
550 and after	43.6	695		
Average Bias nmol/L	-198			
Average Bias %	-72.5			
Urine Cortisol range nmol/l	n	Average %Bias	% Bias range	
100-200	7	-75.2	-96.6 -34.	6
200-500	25	-75.1	-122.3 -21.	.1
>500	11	-68.5	-96.0 -37.	4

A substantial decrease in cut-off values for UCCR will be required (e.g. to possibly 10 from 30). The coloration does not have creatinine values in the data-file to be able to confirm new suggested cut-offs, but on average it would be around 30% of original.

Other species

Only a very small number of paired results are so far available for horse (n=6) and cats (n=3). So far, the data suggest that the impact on cats may be similar to dogs but that for horses it may be less.

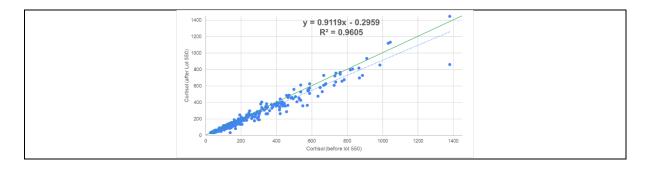
Species	Before Lot 550	After Lot 550	Average	Bias (nmol/l)	Bias %
Species	201 330		•	· ,	
Feline	74	56	65	-18	-27.7
Feline	98	69	83.5	-29	-34.7
Feline	32	27.6	29.5	-5	-16.9
Equine	126	111	118.5	-15	-12.7
Equine	51	38	44.5	-13	-29.2
Equine	154	173	163.5	19	11.6
Equine	187	171	179	-16	-8.9
Equine	160	152	156	-8	-5.1
Equine	113	108	110.5	-5	-4.5

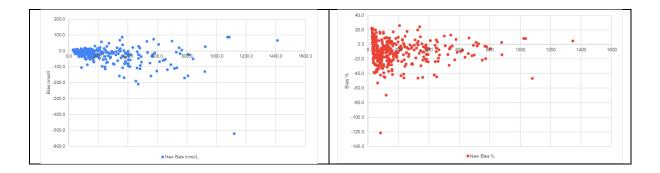
Results incorporating manufacturer adjustment factors in Lot 550 and

beyond

Siemens has proposed the following adjust formula to mitigate the impact of the antibody change. Initially labs would need to be incorporate it LIMS systems but eventually to be included in veterinary specific reagent barcodes and reagent packs.

historical value = (1.1 x new antibody kit value) + 4.14 nmol/L


The ESVE collaboration data has been reanalysed to assess the impact of the manufacturer correction factor.


The correction factor shifts the reportable range from 27.6 to 1380 to 34.5 to 1446

Serum Overall (canine)

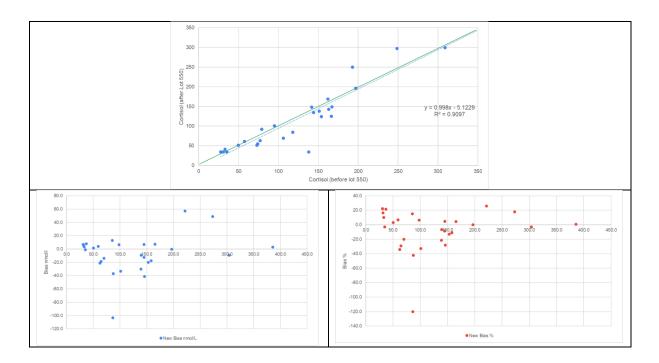
Overall there is negative bias in the results following the antibody change (-23%). The bias varies across concentrations which may make the implementation of simple equipment correction factors difficult as a means to address the change.

N=	401			
	Minimum	Maximum		
Before 550	<27.6	1380		
Adj 550 and after	<34.5	1446		
Average Bias nmol/L Average Bias %	-19 -8.2			
Cortisol range nmol/l	n	Average %Bias	% Bias ra	nge
-50				
<50	77	6.8	-25.1	22.2
<50 50-150	77 152	6.8 -12.1	-25.1 -121.2	22.2 16.9
50-150	152	-12.1	-121.2	16.9

If adjustment of cut-off values is a consideration, the following are the outcome of simple linear regression.

Original Cut- off	Regression derived adjusted cut-off
40	36
50	45
138	126
150	136
250	228
500	456
550	501
600	547

Subjective visual assessment of paired results may also help in deciding new if a change in interpretative guidance is necessary:

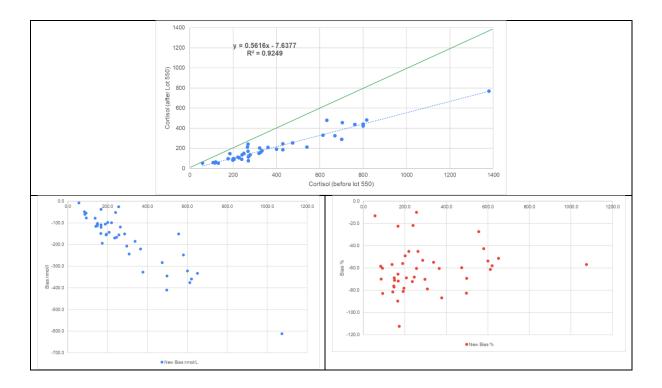

For 40r	nmol/I:		For 50 nm	ol/L:	For 138 n	mol/I:
Previo	us New]	Previous	New	Previous	New
38	36.9		48	37.5	135	120.7
38	34.5		48	43.7	136	148.2
38	37.1		49	59.7	136	86.6
38.6	40.2		49.1	41.8	138	34.5
38.6	35.1		49.1	41.0 51.2	139	118.5
39	37.1		51		141	130.6
39.5	34.8		51	50.2	141	144.9
39.5	36.9		51	56.6 54.7	141.6	148.4
40	36.6		52		142	135.0
41	40.4			45.4	142	128.4
			52.1	35.4	142	139.4
41	36.0		o g 22 po	change	142	119.6
41	42.6		e.g., ?? no	change	105	
41.9					e.g., 125	nmol/l
42	40.4					
42	39.3					
e.g. ??	No change					

For 150nm	nol/I:	For 250 nr	nol/L:		For 500 nmol/l		
Previous	New	Previous	New		Previous	New	
145	158.1	241	228.5		472	489.2	
147	117.4	244	272.5		483	459.5	
149	143.8	246	249.4		488	462.8	
149	157.0	248.7	297.4		494	402.0	
150	128.4	255	250.5				
151	125.1	260	205.4		499	559.6	
152	121.8	e.g., ?? no	change		508	471.6	
153	112.2	e.g., :: 110	change		516	407.8	
154	124.0				527	456.2	
155	113.0				530	438.6	
e.g., 135n For 550 nr	-	For 600 nr	no/I:	,	e.g., 450n	mol/l	
Previous	New	Previous	New				
538	528.8	574	364.9				
538	426.5	577	544.2				
538	611.3	579	556.3				
549	359.4	582	547.5				
574	364.9	588	511.2				
577	544.2	588	628.9				
		588	575.0				
e.g. 500 n	mol/L	635	477.1				
		e.g., 550 r	nmol/L				

Trilostane samples (within 12hrs of dose, canine)

A separate analysis was performed because manufacturer information includes a change in antibody cross reactivity with adrenal steroid pre-cursors. Trilostane has been reported to cause an accumulation of adrenal steroid precursors.

N =	32			
	Minimum	Maximum		
Before 550	27.6	384		
Adj 550 and after	34.5	387		
Average Bias nmol/L	-5			
Average Bias %	-4.1			
_		Average		
Cortisol range nmol/l	n	%Bias	% Bias range	
<50	10	15.9	-3.1	22.2
50-150	11	-22.9	-120.0	15.1
150-250	9	-3.9	-28.2	25.8
250-500	2	-1.2	-3.1	0.8


This data subset included trilostane monitoring ACTH stimulations tests (usually with 6 hours of trilostane dose). It did not include "pre-Vetoryl-cortisol" which is usually sampled at 12 or 24hrs after administration.

Urine

The ESVE collaboration data is "urine cortisol" rather than "urine corticoid:creatinine ratio".

Presumably as a result of the new antibody having different cross-reactivity profile for urinary corticoid metabolites, the bias impact on urine cortisol seems to be much greater than that on serum. The correction formula derived for serum does not correct urine results and so new interpretative guidance

n	44				
	Minimum	Maximum			
Before 550	59.3	1380			
Adj 550 and after	52.1	769			
Average Bias nmol/L	-175				
Average Bias %	-61.4				
		Average			
Cortisol range nmol/l	n	%Bias	% Bias ranges	% Bias ranges	
100-200	7	-61.7	-82.7 -2	22.5	
200-500	25	-64.2	-112.4 -	9.9	
>500	11	-59.1	-86.9 -2	27.2	

A substantial decrease in cut-off values for UCCR will be required The coloration does not have creatinine values in the data-file to be able to confirm new suggested cut-offs, but on average it would be around 40% of original.

Other species

Only a very small number of paired results are so far available for horse (n=6) and cats (n=3). So far, the data suggest that the impact on cats may be similar to dogs but that for horses there may be a positive bias. More data are required.

	Before	Adj After		Bias	
Species	Lot 550	Lot 550	Average	(nmol/l)	Bias %
Feline	74	66	69.9	-8.3	-11.8
Feline	98	80	89.0	-18.0	-20.2
Feline	32	<33.8	32.9	1.8	5.6
Equine	126	126	126.1	0.2	0.2
Equine	51	46	48.5	-5.1	-10.4
Equine	154	194	174.2	40.4	23.2
Equine	187	192	189.6	5.2	2.8
Equine	160	171	165.7	11.3	6.8
Equine	113	123	118.0	9.9	8.4